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1. Introduction and conclusions

Cubic string field theory (CSFT) [1] has played an important role in recent years in de-

scribing the dynamics of the open bosonic string tachyon. Both the unstable vacuum and

the true vacuum where the tachyon has condensed have been shown to be well-defined

states in CSFT [2]. Tachyon condensation is an off-shell process and string field theory is

the natural setting for its analysis. The condensation process should be described by the

solutions of the equation of motion of the tachyon effective action which can be constructed

perturbatively in string field theory. The tachyon effective action in fact can be derived

from the off-shell tachyon amplitudes, which can be computed in various ways in string

field theory. Following the classification of ref. [3], there are four possible approaches for

computing off-shell amplitudes that we briefly describe here since three of them have been

used in this paper.

(a) Field theory approach

The string field contains an infinite number of component fields, whose number grows

exponentially with the mass level L. In this approach one can approximate the cal-

culations by truncating the string field up to some fixed level L [4], for this reason

it is called “level truncation on fields”. For example one can construct the CSFT
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lagrangian by means of a truncated string field up to some level L and then com-

pute the cubic terms for each of the field components at the desired level. From this

classical action one can then derive the tree level effective action for some field com-

ponent (e.g. the tachyon) by integrating out all the other ones through the solution

of their equations of motion. We shall use this procedure in sections 4–5 to derive

the perturbative tachyon effective action.

(b) Conformal mapping

With this method Giddings [5] reproduced the on-shell Veneziano amplitude directly

from Witten’s CSFT. He gave an explicit conformal map that takes the Riemann

surfaces defined by the Witten diagrams to the standard disc with four tachyon

vertex operators on the boundary. Following Giddings’ procedure and with some

additional analysis -related to the oscillator method in c)- Samuel [6] and Sloan [7]

computed the off-shell Veneziano amplitude. This procedure allows in principle the

calculation of any amplitude [8]. Amplitudes computed using this method are exact,

although numerical approximations are necessary to get concrete numbers for them.

We shall solve Samuel’s equations to derive, from the 4-tachyon off shell amplitude,

some very accurate numerical approximations of the quartic coupling of the tachyon

potential and of a time dependent solution of CSFT.

(c) Oscillator method

Perturbative amplitudes can be directly evaluated using the oscillator representation

of the vertices and propagators in CSFT. The vertex and the propagator can be

written completely in terms of squeezed states [9], i.e. in terms of exponentials of

quadratic forms in the oscillators creating and annihilating operators. In this way the

complete set of amplitudes associated with a Feynmann diagram results in an integral

over the internal momenta that can be evaluated using standard squeezed techniques

(see section 2). Any perturbative amplitude is then given in a closed-form expression

containing infinite-dimensional Neumann matrices. While no analytical way is known

at present to exactly calculate such expressions, one can evaluate the amplitudes to

a high degree of precision truncating the Neumann matrices to finite size [10]. This

means truncate the levels of oscillators in the string states which are considered, this

is the reason for which this method is known as “level truncation on oscillators”.

Rather then having to include a number of fields which grows exponentially in the

level, with this procedure one simply needs to evaluate quantities, as the determinant

of the Neumann matrices, whose size grows linearly in the truncation level. A specific

example of this method is given in appendix B.

(d) Moyal string field theory

In this alternative formulation of SFT the string joining star product is identified with

the Moyal product. Calculations performed using this method reproduce directly

the expressions for the off-shell amplitudes as for example the 3-point and 4-point
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tachyon amplitudes [11]. Some numerical results [12] achieved with this procedure

are comparable to those obtained using the methods (a)-(c).

In this paper we mainly focus on the four tachyon amplitude which we evaluate both

by solving explicitly Samuel’s elliptic equations for the off-shell factor (method (b)) and

by level truncation (methods (a) and (c)). In particular we have obtained a new series

solution for the off-shell factor introduced by Samuel [6], which, at variance with the one

found in [11], provides the off-shell factor in terms of the original coordinates used in [6].

From this solution we shall then extract off-shell information both on the non-perturbative

stable vacuum and on the tachyon dynamics.

As a test for the solution we shall first improve the numerical approximation for the

evaluation of the exact quartic self-coupling c4 in the tachyon potential. This was computed

for the first time in [4] and repeated to a higher degree of precision in [10]. Our results

provides c4 with a precision that goes up to the ninth significative digit and is in complete

agreement with the extrapolations of ref. [13].

As a second application we shall improve the CSFT time-dependent solution given

in [14] as a sum in powers of et.

Since Sen’s seminal paper on the rolling tachyon [15], much work has been devoted to

the study of time dependent solutions in string theory [16 – 20, 14]. The setting is realized

by considering a system of unstable D-branes which decays in time as the tachyon field

rolls down from the maximum of the potential towards the stable minimum. A review on

previous work on this problem is given in [2].

The dynamics of a rolling tachyon has been studied in various frameworks. The physical

picture emerging from the boundary states, RG flow and boundary string field theory

(BSFT) approaches [21, 17, 22] is quite clear. The tachyon rolls from the perturbative

to the true vacuum, which is reached in an infinite time. The same physical picture can

also be obtained following other approaches, among them the analysis involving DBI-

type actions [23 – 26], S-branes and time-like Liouville theory [27 – 31], matrix models [32 –

37], cubic superstring field theory [38 – 40], vacuum SFT [41 – 43] and fermionic boundary

CFT [44].

CSFT instead fails to provide a meaningful description of the rolling tachyon dynamics.

At the lowest order, the (0, 0), in the level truncation scheme one considers only the tachyon

field and the cubic string field theory action becomes

S =
1

g2
o

∫

d26x

(

1

2
φ(x) (¤ + 1)φ(x) − 1

3
λ

(

λ(1/3)¤φ(x)
)3

)

, (1.1)

where the coupling λ has the value λ = 39/2/26 = 2.19213. Considering spatially homoge-

neous profiles of the form φ(t), where t is time, the equation of motion derived from (1.1) is

(∂2
t − 1)φ(t) + λ1−∂2

t /3
(

λ−∂2
t /3φ(t)

)2
= 0. (1.2)

This equation was studied in [18 – 20, 14]. In [20] it was found an almost exact well behaved

solution of this equation for λ < 1. The solution has interesting analytical properties and

is remarkably simple. The “evolution” of the solution to different values of λ is driven by
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a diffusion equation which makes eq. (1.2) local with respect to the time variable t. The

analytic continuation of this solution to the physical value λ = 39/2/26 can be performed

for any time t with the exception of a single point, t = 0, where the solution is not analytic.

The profile can be expressed in terms of a series in powers of et for t < 0 and in powers of e−t

for t > 0 and in this way it is well-behaved except at the origin where it has a cusp. Alter-

natively, one can extend to positive t the solution in powers of et and the solution presents

ever-growing oscillations. In any case the tachyon always rolls well past the minimum of

the potential then turns around. Solutions with ever-growing oscillations have been found

also in refs. [18, 19, 14]. In [14], in particular, a systematic level-truncation analysis was

carried out for a trajectory φ(t) expressed as a power series in et. It was also shown that

the non-local field redefinition, which takes the CSFT action to the BSFT action [45], also

maps the wildly oscillating CSFT solution to the well-behaved BSFT exponential solution.

Increasing the level of truncation in CSFT or the number of terms retained in the tachyon

effective action leads to a well defined trajectory at least up to some upper bound in t,

t = tb. In fact, if the position of the first turnaround points, that the solution exhibits for

t > 0, tends to stabilize as the truncation level L of the effective action increases, the expan-

sion in powers of et for t > 0 would be justified at least up to those points [14]. For the first

turnaround points, the leading terms in the CSFT solution are those with small powers of

et. Consequently, the very accurate value of the 4-tachyon amplitude that we have found in

this paper improves the solution of ref. [14], at least up to the first extrema of the trajectory.

The trajectories φ(t), obtained by computing the φ4 term in the effective action exactly

and the terms up to φ7 in an L = 2 approximation, show that indeed the position of the

first turnaround point does not change significantly with the improvement in the φ4 term.

This suggests the possibility that this value actually has the physical meaning of inversion

point. The second turnaround point instead changes position and amplitude compared to

the one found in [14]. The inclusion of higher order terms in the lagrangian however does

not produce significative changes, so that the trajectory seems again to stabilize. Thus we

confirm that for t > 0, the tachyon does not roll towards the stable non-perturbative min-

imum of the potential and that the qualitative behavior of wild oscillations is reproduced

even if the amplitudes at the turnaround points beyond the first are sensibly diminished.

The solutions of the 4-tachyon off-shell amplitude that we have found therefore is a

very useful tool for providing precise tests of CSFT. The agreement with previous work on

the subject, both on the quartic tachyon coupling and on the CSFT rolling tachyon, is an

excellent test for the accuracy of our off-shell solution.

As for the DBI tachyon action, it would be instructive to study the cubic tachyonic

action on a curved background and, in particular, in a FriedmannRobertsonWalker (FRW)

spacetime. It would be interesting to see if the coupling of the free theory to a Friedman-

Robertson-Walker metric [46], and the consequent inclusion of a Hubble friction term,

might lead from the classical solution with ever-growing oscillations to damped oscillations

around the stable minimum of the potential well. Cubic string field theory might then

open interesting perspectives in tachyon cosmology [47].

The paper is organized as follows. In section 2 we review the derivation of the off-shell

four tachyon amplitude following ref. [6]. Explicit formulas for the Neumann coefficients
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involved in the oscillator formalism are reported in appendix A. A brief review of the

level truncation method is also given and a specific example is provided in appendix B.

In section 3 we develop the tools needed to perform the computations of sections 4–5. A

solution to the elliptic equations defining the off-shell amplitude is derived, obtaining a

useful expansion of κ(x) in powers of the Koba-Nielsen variable x. This analysis improves

the accuracy in the evaluation of the quartic coupling of the tachyon potential, which

is performed in section 4. Finally, in section 5 we use the exact four-point amplitude

to study the first few coefficients of the rolling tachyon solution expressed as a sum of

exponentials ent, and we compare the corresponding solution with the ones obtained in the

level truncation scheme.

Our calculations were performed using the symbolic manipulation program Mathemat-

ica.

2. Off-shell 4-tachyon amplitude

The first step in computing the off-shell four tachyon amplitude in CSFT is to construct

the Feynman diagrams directly from the cubic interaction vertex. Four-point amplitudes

involve one propagator and two vertices. After gauge fixing, we use the Feynman-Siegel

gauge, the propagator becomes b0/L0 where L0 is the Virasoro generator for the interme-

diate state including ghosts

L0 = p · p − 1 +

∞
∑

n=1

(α−n · αn + nb−ncn + nc−nbn) . (2.1)

Writing the propagator
b0

L0
= b0

∫ ∞

0
dTe−TL0 ,

e−TL0 inserts a world-sheet strip of length T into the amplitude.

2.1 Conformal mapping: on-shell amplitude

A closed analytical expression for the off-shell four tachyon amplitude in CSFT [1] was

derived in [6] by following Gidding’s analysis of the on-shell Veneziano amplitude [5]. Gid-

dings gave an explicit conformal map that takes the Riemann surfaces defined by the

Witten diagrams to the standard disc with four tachyon vertex operators on the boundary.

This conformal map is defined in terms of four parameters α, β, γ, δ. The four parameters

are not independent variables. They satisfy the relations

αβ = 1 γδ = 1 (2.2)

and
1

2
= Λ0(θ1, k) − Λ0(θ2, k) , (2.3)

where Λ0(θ, k) is defined by

Λ0(θ, k) =
2

π

(

E(k)F (θ, k′) + K(k)E(θ, k′) − K(k)F (θ, k′)
)

. (2.4)
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In (2.4) K(k) and E(k) are complete elliptic functions of the first and second kinds, F (θ, k)

is the incomplete elliptic integral of the first kind (we follow the notation of ref. [48]). The

parameters θ1, θ2, k and k′ satisfy

k2 =
γ2

δ2
k′2 = 1 − k2 (2.5)

sin2 θ1 =
β2

β2 + γ2
sin2 θ2 =

α2

α2 + γ2
. (2.6)

By convention β > α and δ > γ. Because of (2.2) and (2.3) only one variable is independent.

By convention this is taken to be α, that is related to T , the lenght of the intermediate

strip, by
T

2
= K(k′)

[

Z(θ2, k
′) − Z(θ1, k

′)
]

(2.7)

where Z(θ, k) is defined through the ordinary elliptic functions

Z(θ, k) = K(k)E(θ, k) − E(k)F (θ, k) . (2.8)

The parameter α is finally related to the Koba-Nielsen variable x through

x =

(

(1 − α2)

(1 + α2)

)2

, α =

√

1 −√
x

1 +
√

x
. (2.9)

Using this conformal map Giddings managed to derive the Veneziano amplitude from

CSFT. Because of the cubic vertex, in CSFT there are six relevant Feynman diagrams

for four particles processes (figure 1). The contribution from the graph (a) in figure 1 was

computed in [5] to be

As(p1, p2, p3, p4) =

∫ 0

α0

dα 2AG
dT

dα
(β − α)2(p1·p2+p3·p4)(β + α)2(p1·p3+p2·p4)

×(2α)2(p2·p3)(2β)2(p1·p4) (2.10)

where the integration limits α0 =
√

2 − 1 and α = 0 correspond to T = 0 and T = ∞
respectively , 2AG is the ghost contribution and is given by

2AG = 8
1

2π

√

α2 + γ2
√

β2 + γ2(β2 − α2)K(γ2) (2.11)

and the Jacobian factor almost cancels the ghost factor

dT

dα
= −4(β2 − α2)

αAG
. (2.12)

2.2 Oscillator method: off-shell amplitude

Samuel derived a perturbative off-shell string amplitude [6] directly from string field theory

by requiring that it reproduces Gidding’s result (2.10) when the momenta are set on-shell.

We now briefly review Samuel results.
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1 2

4 3
   (a)

1 2

4 3

(b) (c)

1 2

4 3

(f)

4

1 2

3

(e)

1

4

2

3

(d)

1 2

4 3

Figure 1: The relevant Feynman diagrams for the four particles scattering.

Let
g

2
〈V (3)

41I |〈V
(3)
23J |b0e

−TL0 |V (2)
IJ 〉 = 〈V (4)

1234| (2.13)

denote the vertex function associated with the graph (a) in figure 1, where the subscripts

1, 2, 3, 4, I and J indicate Fock-space labels. The full contribution to the diagram is

∫ ∞

0
dT 〈V (4)

1234||Ψ
(4)
4 〉|Ψ(3)

3 〉|Ψ(2)
2 〉|Ψ(1)

1 〉 (2.14)

where |Ψ(r)
r 〉 is the Fock-space representation of the external states. The explicit oscillator

representations of 〈V (2)| and 〈V (3)|

〈V (2)
12 | =

∫

d26p 〈p|(1) ⊗ 〈p|(2)
(

c
(1)
0 + c

(2)
0

)

e
−

P∞
n=1(−1)n

h

a
(1)
n ·a(2)

n +c
(1)
n b

(2)
n +c

(2)
n b

(1)
n

i

(2.15)

〈V (3)
123 | =

∫

d26p1d
26p2d

26p3 δ(p1 + p2 + p3)〈p1|(1)c(1)
0 ⊗ 〈p2|(2)c(2)

0 ⊗ 〈p3|(3)c(3)
0 ·

·e−
1
2

P3
r,s=1

h

a
(r)
m V rs

mna
(s)
n +2a

(r)
m V rs

m0p(s)+p(r)V rs
00 p(s)−2c

(r)
m Xrs

mnb
(s)
n

i

(2.16)

show that all the terms in (2.14) are given in terms of exponentials of quadratic expressions

in the oscillators. Using standard squeezed state techniques [9], closed-form expressions

can be given for any perturbative amplitude. In the case of the four tachyon amplitude
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corresponding to the first diagram of figure 1, this procedure gives1

A4(p1, p2, p3, p4) =
λ2

cg
2

2
δ(

∑

ipi)
∫ ∞
0 dT eT det

(

1−(X̃11)2

1−(Ṽ 11)2

)

e−
1
2
piQ

ijpj (2.17)

where λc is a constant related to the Neumann coefficient for the three tachyon vertex,

λc = e3V 11
00 = 39/2

26 . In this formula Ṽ 11 and X̃11 are defined by

Ṽ 11
mn = e−

(m+n)
2

T V 11
mn X̃11

mn = e−
(m+n)

2
T X11

mn (2.18)

where V rs and Xrs are infinite-dimensional matrices

V rs =







V rs
11 V rs

12 . . . V rs
mn . . .

V rs
21 V rs

22 . . . V rs
m+1,n . . .

. . . . . . . . . . . . . . .






, Xrs =







Xrs
11 Xrs

12 . . . Xrs
mn . . .

Xrs
21 Xrs

22 . . . Xrs
m+1,n . . .

. . . . . . . . . . . . . . .






(2.19)

whose elements are matter and ghost Neumann coefficients of the cubic string field theory

vertex, for which exact expressions are given in the appendix A. Qij are defined as

Qij = V iI
0m

(

1

1 − (Ṽ 11)2

)

mn

Ṽ 11
np V Ij

p0 + V 11
00 − T (2 − δij) i, j = 1, 2 or i, j = 3, 4 (2.20)

Qij = −V iI
0m

(

1

1 − (Ṽ 11)2

)

mn

C Ṽ 11
np V Ij

p0 i = 1, 2 and j = 3, 4 or i = 3, 4 and j = 1, 2

where m,n, p ≥ 1, C = δmn(−1)n and the sum over I denotes a sum over the intermediate

states.

The two expressions (2.10) and (2.17) should both represent the contribution to the

four tachyon amplitude coming from the diagram (a) in figure 1 when the momenta are

on-shell. To relate them in the proper way, a general procedure was developed in [6] for

computing the functions Qij appearing in (2.17) from the Giddings map, giving

Q11 = Q44 = ln α − ln κ, Q22 = Q33 = − ln α − ln κ

Q12 = Q21 = − ln |α − β|, Q13 = Q31 = − ln(α + β)

Q14 = Q41 = − ln(2β), Q23 = Q32 = − ln(2α)

Q24 = Q42 = − ln(α + β), Q34 = Q43 = − ln |α − β| (2.21)

where κ is given as an integral

ln(κ) = −2α
(β2 − α2)

√

(α2 + γ2)(α2 + δ2)

∫ ∞

1
dw ln(w − 1)

d

dw

(

√

(w2 + α2γ2)(w2 + α2δ2)

(w + 1)(β2w2 − α2)

)

.

(2.22)

As already noticed, although α, β, γ, δ all appear in the above equation, there is only one

independent variable, so that the function κ in (2.23) is actually a function of α. The

substitution of (2.21) in (2.17) leads to the following formula

A4(p1, p2, p3, p4) = λ2
c

g2

2

∫ 0

α0

dα
dT

dα
eT det

(

1 − (X̃11)2

1 − (Ṽ 11)2

)

[κ(α)]
P4

i=1 p2
i (α)−(p2

1+p2
4)+p2

2+p2
3

1We follow the notation of refs. [10, 49].
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|α − β|2(p1·p2+p3·4)(β + α)2(p1·p3+p2·4)(2α)2(p2 ·p3)(2β)2(p1·p4) (2.23)

Comparing the two expressions (2.10) and (2.23) on shell (p2
i = 1), one can see that the

momentum dependence matches and for the momentum independent part the following

identity holds

λ2
c

(

dT

dα

)

eT det

(

1 − (X̃11)2

1 − (Ṽ 11)2

)

= 2Ag
dT

dα

1

[κ(α)]4
. (2.24)

By trading the variable α for the Koba-Nielsen variable x through (2.9) in (2.23), the

contribution from the first graph in figure 1 becomes

A4(p1, p2, p3, p4) =
g2

2

∫ 1

1
2

dx xp1·p2+p3·p4(1 − x)(p1+p4)2−2

(

κ(x)

2

)

P4
i=1 p2

i −4

(2.25)

The remaining diagrams (b), (c), (d), (e), (f) of figure 1 can be obtained from the

first one by a suitable permutation of the string labels, i.e. by permuting the momenta

in (2.25), and the total four-point tachyon amplitude is the sum of these six contributions.

Notice that the Veneziano amplitude is exactly reproduced when p2
i = 1 in (2.25) and the

additional factor containing κ(x) goes to 1.

2.3 Level truncation

The infinite-dimensional matrices (2.19) appearing in the final expression for a given di-

agram are expressed in terms of the Neumann coefficients of Witten’s vertex. The level

truncation method we use in this paper consists in the truncation on the level of oscillators

associated with the Neumann coefficients. This procedure is somewhat different from the

original method of level truncation [4] (method a) section 1), in which one calculates the

SFT action by only including in the string field expansion contributions up to a fixed total

oscillator level. While the latter approach involves computations with a number of fields

that grows exponentially in the level, in the former one has to calculate the determinant

of some matrices whose size grows linearly in the truncation level.

Let us explicitly remind the procedure [49] in the case of a tree diagram with four

external fields as (2.17), in which there is a single internal propagator with Schwinger

parameter T . One starts with a suitable change of coordinates in (2.17)

σ = e−T (2.26)

then expands in powers of σ, so getting an expression of the form

∫ 1

0

dσ

σ2
σp2

∞
∑

n=0

cn(pi)σ
n =

∞
∑

n=0

cn(pi)

p2 + n − 1
, (2.27)

where p = p1 +p2 = p3 +p4 represents the momentum of the intermediate state. The poles

p2 = 1 − n in (2.27) clearly correspond to the contributions of intermediate particles as

the tachyon (n = 0), the gauge field (n = 1) and all the other open string massive fields.

Truncate all the matrices to size L×L means to truncate the sum in (2.27) to n = L, thus

imposing a limit on the mass of the intermediate states.
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The analysis can be simplified by noting that in the four point amplitude the contri-

butions of odd level fields cancel between s and t channels so that only even levels in the

truncation, i.e. only even powers of σ in the expansion (2.27), need to be considered. An

explicit example of the procedure above explained is given in appendix B, where the four

tachyon amplitude at level L = 2 is derived in the time-dependent case.

3. Solution for the function κ(x)

As shown in the previous section the off-shell 4-point string amplitudes are completely

determined once the function κ(x) defined by (2.22) is known. To determine the function

κ(α, γ) we have first to solve eq. (2.3) for one of the two variables in terms of the other,

so that the function κ will be a function of only one of the two α or γ. Since the four

point amplitude is written in terms of an integral over x, which is easily related to α

through (2.9), it would be more natural to solve for γ as a function of α then the opposite.

The solution can be found numerically and for γ as a function of x is given by the solid

line in figure 2. γ goes from 0 to 1 while x goes from 1 to 1/2 and α goes from 0 to
√

2−1.

To check for the accuracy of the solution, we have found two different expansions: 1) A

power series in α which gives γ in a neighbor of 0 and can be inverted so as to give α as a

function of γ around 0. 2) An expansion of α around
√

2− 1 as an expansion in 1− γ, this

series cannot be inverted due to the presence of terms of the type (1− γ)m log(1− γ)n. We

have found a general procedure to obtain as many terms as necessary in both expansions

and the function α(γ) can be determined in the whole range 0 ≤ γ ≤ 1. As we shall show

in fact the two series for α(γ) overlap in an extended interval that goes from γ ∼ 0.6 to

γ ∼ 0.7.

3.1 γ and α around 0

By using the integral representations of the elliptic functions [48] it is possible to write the

equation (2.3) in a useful form

E(γ2)

∫ γ/α

αγ
dt

1
√

t2 + γ4
√

1 + t2
− (1 − γ4)K(γ2)

∫ γ/α

αγ
dt

1
√

t2 + γ4(
√

1 + t2)3
=

π

4
(3.1)

To expand (3.1) for small γ and α we have to divide the integration region into three

intervals in such a way that the square roots in the denominators of (3.1) can be consistently

expanded and the integrals in t performed. For example consider the integral in the first

term of (3.1), it can be rewritten as
∫ γ/α

αγ
dt

1
√

t2 + γ4
√

1 + t2
=

∫ γ2

αγ
dt

1

γ2
√

1 + t2

γ4

√
1 + t2

+

∫ 1

γ2

dt
1

t
√

1 + γ4

t2

√
1 + t2

+

∫ γ
α

1
dt

1

t2
√

1 + γ4

t2

√

1 + 1
t2

(3.2)

In each integral of the rhs the integration domain is contained in the convergence

radius of the Taylor expansions of the square roots containing γ, so that they can be safely

expanded and the integrals in t performed.
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With this procedure one gets the following equation equivalent to (3.1)

E(γ2)
∞
∑

n,k=0

Γ(1
2 )2

Γ(1
2 − n)Γ(1

2 − k)n!k!
{

2

2n + 2k + 1

[

γ4k −
(

α

γ

)2n+1

(αγ)2k

]

+ (1 − δkn)
γ4n − γ4k

2k − 2n
− δknγ4n ln γ2

}

−(1 − γ4)K(γ2)

∞
∑

n,k=0

Γ(1
2 )Γ(−1

2)

Γ(1
2 − n)Γ(−1

2 − k)n!k!
{

1

2n + 2k + 1

[

γ4k −
(

α

γ

)2n+1

(αγ)2k

]

+ (1 − δkn)
γ4n − γ4k

2k − 2n
− δknγ4n ln γ2

+
1

2n + 2k + 3

[

γ4n −
(

α

γ

)2k+3

(αγ)2n

]}

=
π

4
(3.3)

The series containing ln γ2can be resummed, the first gives 2
πK(γ2) the second 2

π(1−γ4)
E(γ2).

Hence these terms cancel and ln γ2 actually disappears from the equation. As a consequence

one can write γ as a power series in α whose coefficients are determined requiring that

eq. (3.3) is satisfied. γ turns out to contain only the powers α4n+1, n ∈ N. We have

determined the first 12 terms of this series to get a very good approximation for γ in an

extended neighbor of zero (in which sense it is an extended neighbor will be clarified later)

γ =
√

3α

(

1 + 5α4 +
1041

16
α8 +

38719

32
α12 +

109062913

4096
α16 +

5278728465

8192
α20+

2172202186251

131072
α24 +

116561474500179

262144
α28 +

3303689940814193505

268435456
α32+

187301165958864015157

536870912
α36 +

86571446884950765378149

8589934592
α40+

5078927050639748451791733

17179869184
α44 + O(α48)

)

(3.4)

Any higher order in (3.4) can be in principle computed from (3.3). Using (2.9) we can plot

γ as a function of x and compare it to the graph obtained from the numerical solution

of eq. (3.1). As it is clear from figure 2 γ(x) has in x = 1/2 a vertical tangent, thus

showing the presence of a branch point which cannot be gotten from a power series of the

form (3.4). Nevertheless (3.4) gives a very good approximation for γ(x) except in a small

neighbor of x = 1/2. In particular the agreement between the values of γ obtained from

the series (3.4) and the numerical values is on the 15-th significative digit for 0.8 ≤ x ≤ 1,

where the series (3.4) is expected to give exact results, thus providing a precision test for

the accuracy of the numerical solution. Moreover, the expansion (3.4) can be iteratively

inverted to give a series for α as a function of γ

α =
γ√
3

(

1 − 5

9
γ4 +

959

1296
γ8 − 10993

7776
γ12 +

83359631

26873856
γ16 − 3579242677

483729408
γ20+

1297273056905

69657034752
γ24 − 6783253984031

139314069504
γ28 +

168109910408625655

1283918464548864
γ32−
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Figure 2: Plots of γ(x): the solid line is the numerical solution of the elliptic equation, the dashed

line is the power series.

24949101849547687507

69331597085638656
γ36 +

10046339553062261150885

9983749980331966464
γ40−

512861712698825472832315

179707499645975396352
γ44 + O(γ48)

)

(3.5)

By plugging the expansion (3.4) in (2.22) and using (2.9), the corresponding expansion for

κ(α) can be found by means of numerical integration

κ(α) =
8

3
√

3
exp

[

−2.5α4 − 7.1562α8 − 75.927α12 − 1238.7α16 − 24301α20

−531290α24 − 1.2489 · 107 α28 − 3.0923 · 108 α32

−7.9627 · 109 α36 − 2.1140 · 1011 α40 − 5.7517 · 1012 α44
]

+ O(α48) .

(3.6)

3.2 γ around 1 and α around
√

2 − 1

Around x = 1/2, i.e α =
√

2 − 1 and γ = 1, it is possible to obtain only x (or α) as a

function of γ and not the opposite. Such an expansion can be obtained by first expanding

eq. (3.1) around γ = 1 and then looking for an expansion of α in terms of powers of 1 − γ

and ln(1 − γ)

α =
√

2 − 1 + a1(1 − γ) + a2(1 − γ)2 + · · · + b1(1 − γ) ln(1 − γ) + (3.7)

b2(1 − γ)2 ln(1 − γ) + · · · + c1(1 − γ)(ln(1 − γ))2 + c2(1 − γ)2(ln(1 − γ))2 + · · ·

The coefficients in (3.7) are determined by requiring that (3.1) is satisfied. We provide

here directly the expansion of x as a function of 1 − γ up to the ninth order

x =
1

2
+

1

8
(1 − γ)2

[

1 − 2 log

(

1 − γ

4

)]

− 1

4
(1 − γ)3 log

(

1 − γ

4

)

−
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Figure 3: Plots of x(γ): the dashed line gives the expansion of x(γ) which holds in a neighbor of

γ = 1, the solid line gives the expansion of x(γ) around γ = 0.

1

16
(1 − γ)4

[

1 + 3 log

(

1 − γ

4

)]

− 1

96
(1 − γ)5

[

7 + 12 log

(

1 − γ

4

)]

+

1

1536
(1 − γ)6

[

−97 − 108 log

(

1 − γ

4

)

− 24 log2

(

1 − γ

4

)

+ 64 log3

(

1 − γ

4

)]

−

1

2560
(1 − γ)7

[

119 + 100 log

(

1 − γ

4

)

− 40 log2

(

1 − γ

4

)

− 320 log3

(

1 − γ

4

)]

+

1

10240
(1 − γ)8

[

−321 − 60 log

(

1 − γ

4

)

+ 1240 log2

(

1 − γ

4

)

+ 2240 log3

(

1 − γ

4

)]

+

1

107520
(1 − γ)9

[

−1871 + 5740 log

(

1 − γ

4

)

+ 29120 log2

(

1 − γ

4

)

+ 31360 log3

(

1 − γ

4

)]

+ · · · (3.8)

From (3.5) one can easily get x as a function of γ in the region x ∼ 1 (γ ∼ 0) so

that x(γ) can be obtained for the whole range 1/2 ≤ x ≤ 1. The two expansions in fact

overlap in a long range for 0.3 ≤ γ ≤ 0.7 as it is shown in figure 3. They have an excellent

agreement up to the 13-th significative digit for 0.6 ≤ γ ≤ 0.7.

4. Coefficient of the quartic tachyon potential

The static tachyon potential has the form2

VT =
1

2
φ2 − g k φ3 + g2k2 c4φ

4 + · · · (4.1)

where g is the string coupling constant and k = 37/2

27 .

2We follow the notation of refs. [50, 10].
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The four point tachyon potential is obtained from the off-shell four tachyon amplitude

by setting to zero the external momenta and by explicitly subtracting out the term with the

tachyon on the internal line. The amplitude is the sum of the six Feynman diagrams shown

in figure 1, the first of which gives the contribution (2.25) that can be usefully rewritten

in terms of the Mandelstam variables

A4(s, t, u) =
g2λ2

c

2

∫ 1

1
2

dx x
t−s−u

2 (1 − x)s−2

(

κ(x)

2

)t+s+u−4

. (4.2)

To get explicitly the first diagram contribution to the amplitude one can set t = u = 0

in (4.2), A4 can then be defined through an analitical continuation of (4.2) to the region

s ≤ 1. This can be achieved by adding and subtracting the pole in x = 1 in the integrand

of (4.2)

∫ 1

1
2

dx x− s
2 (1 − x)s−2

(

κ(x)

2

)s−4

=

∫ 1

1
2

dx x− s
2 (1 − x)s−2

[

(

κ(x)

2

)s−4

−
(

κ(1)

2

)s−4
]

+

(

κ(1)

2

)s−4 ∫ 1

1
2

dx x− s
2 (1 − x)s−2 . (4.3)

where the first integral is now well defined in s = 0. When Re[s] > 1 the last integral

in (4.3) gives

2s−2

√
π

Γ
(

1 − s

2

)

Γ

(

s

2
− 1

2

)

+
22− s

2

s − 2
2F1

(

1, 2 − s; 2 − s

2
;−1

)

that has a well defined limit for s → 0, so that the four point tachyon potential can be

written

A4(0, 0, 0) =
g2λ2

c

2

[

∫ 1

1
2

dx

(

(

2

κ(x)

)4

−
(

2

κ(1)

)4
)

(1 − x)−2 − 3

2

(

2

κ(1)

)4
]

(4.4)

As already pointed out, the function κ(x) in (4.4) can be evaluated numerically in the whole

interval 1
2 < x < 1, by using the numerical solution of eq. (3.1) graphed by the solid line in

figure 2. The integrand in (4.4) is regular at x = 1, as can be easily checked by studying the

behavior of (3.6) in a neighbor of α = 0. However, problems are expected in the numerical

evaluation of the integral in a neighbor of x = 1 due to the product of a pole times a

zero. To circumvent possible computational problems we divided the interval 1
2 < x < 1

into two parts . For x ∈ [12 , 0.95] we used numerical evaluation of κ(x), by plugging the

numerical solutions of (3.1) in (2.22). For x ∈ [0.95, 1] we used the analitical expression

obtained substituting (2.9) in (3.6). By summing the two contributions we have found the

value A4(0, 0, 0) = − g2

2 2.94497480(2). To get the the quartic term of the tachyon effective

potential we have to subtract [4] from (4.4) the contribution from the internal tachyon line

A4t(s, t, u) =
g2

2
λ

2−s− t+u
3

c
1

s − 1
(4.5)
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evaluated at s = t = u = 0. Each graph in figure 1 contributes equally, so that for the

quartic tachyon coupling one eventually gets

g2k2c4 =
6

4!
[A4(0, 0, 0) − A4t(0, 0, 0)] =

6

4!

g2

2

(

−2.94497480(2) +
39

212

)

=
g2

4!
5.5813353(1)

(4.6)

where the factor 1/4! is required to recover the units of [50, 10]. The numerical evaluation

of the coefficient c4 from the exact four tachyon amplitude was given in [6] to an accuracy

of 1%, c4 ≈ 1.75(2), and in [10] to an accuracy of 0.1%, c4 ≈ 1.742(1). We have repeated

this calculation to an higher degree of precision, and the result (4.6) gives

c4 ≈ 1.74220008(3) . (4.7)

This coefficient was calculated using the level truncation scheme up to level L = 20 in [50],

and improved up to level L = 28 in [13], thus obtaining c4,L=28 ' −1.70028, with a

discrepancy of 2.4% with respect to (4.7). In the same paper, a procedure to extrapolate

the known level truncated results and predict the asymptotic L → ∞ value for c4 was

described, giving an extimated value c4,L→∞ = 1.7422006(9) that agrees within the 10−7

of accuracy with our exact result (4.7).

5. The rolling tachyon in cubic string field theory

As a second application of the formalism developed in section 2, we discuss some properties

of the rolling tachyon solutions in CSFT. This problem has been faced analytically in [20]

at the (0, 0) level, and numerically in [18, 19, 14]. In particular, a level truncated analysis

of the tachyon dynamics was carried out in [14] for a perturbative solution given as a sum

of exponentials of the form

φ(t) =
∑

n>0

anent . (5.1)

The solution and all its derivatives satisfy the boundary condition φ → 0 as t → −∞.

The coefficients in (5.1) can be determined by perturbatively solving the CSFT equation

of motion. For such a profile the φn+1 term in the tachyon effective action contributes only

to the coefficients ak with k ≥ n. Since in the CSFT tachyon effective action

S[φ] =
∑

n

gn−2

n!

∫ n
∏

i=1

(2πdki)δ

(

∑

i

ki

)

φ(k1) · · · φ(kn)An(k1, . . . , kn) (5.2)

the coefficients A2 and A3 are exactly known,

A2(k1, k2) = 1 − k1k2 , A3(k1, k2, k3) = −2

(

3
√

3

4

)3+k2
1+k2

2+k2
3

, (5.3)

the first two coefficients in (5.1) are exact and can be normalized as a1 = 1, a2 =

−64/(243
√

3).
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In [14] an L = 2 approximation was explicitly provided for the coefficients a3 . . . a6 in

the sum (5.1)

φ(t) ∼= et − 64

243
√

3
e2t + 0.002187 e3t − 3.9258 10−6 e4t + 4.9407 10−10 e5t − 6.3227 10−12e6t

(5.4)

For negative t eq. (5.4) describes the rolling of the tachyon off the unstable maximum

along the potential. The physical interpretation for positive t is more problematic. The

truncated expansion (5.4) is a solution only up to some upper bound t = tb which increases

by increasing the number of terms one includes in the sum. Consequently, the asymptotic

behavior of the solution for large positive t cannot be extrapolated from eq. (5.4), being

the sum alternate the asymptotic behavior would simply be ±∞ depending on the order

n at which one truncates the sum (5.1).

Before exponentially exploding φ(t) presents an oscillatory behavior with increasing

amplitudes that makes the rolling tachyon dynamics in the framework of CSFT for positive

t difficult to interpret. In ref. [14], however, it was shown that the trajectory φ(t) is well-

defined. Increasing both the level of truncation and the number of terms retained in the

power series (5.1) leads to a convergent value of φ(t) for any fixed t with t < tb. If the

position of the first turnaround points, that the solution exhibits for t > 0, tends to stabilize

as the truncation level L of the effective actions increases, the expansion (5.4) for t > 0

would be justified at least up to those points. The trajectories φ(t), obtained by computing

the φ4 term in the effective action up to L = 16, show that indeed the position of the first

two turnaround points seems to stabilize [14]. For t > 0, the tachyon does not roll towards

the stable non-perturbative minimum of the potential.

We shall now study how this solution is modified by using the exact value of the 4-

tachyon term in the effective action for homogeneous time dependent profiles. The exact

value of the coefficient a3 can be obtained by computing integrals of the type (2.25), that

in the time-dependent case read

A4(p1, p2, p3, p4) =
g2

2

∫ 1

1
2

dx x−p1·p2−p3·p4(1 − x)−(p1+p4)2−2

(

κ(x)

2

)−
P4

i=1 p2
i−4

(5.5)

To get the equations of motion the function A4 in (5.2) has to be evaluated for imaginary

integer values of the field modes so that (5.5) is regular and does not need any analytical

continuation. In the evaluation of a3, the relevant integral (5.5) over the Kobe-Nielsen

variable is

A4(−i,−i,−i, 3i) =
g2

2

∫ 1

1
2

dx x−2(1 − x)2
(

κ(x)

2

)8

(5.6)

Summing all the diagrams in figure 1 and subtracting the corresponding contributions

coming from the internal tachyon line, A4t = 229/322, we get a3 = 0.00241475435(3). This

value, which is exact, can be compared with the corresponding ones obtained through the

level truncation approximation. The first column of table 1 shows the sequence of the first

approximate values of the a3(L) coefficients up to L = 14. The level sequence is perfectly

consistent with the exact value given in the last row (first column), which should then be

considered as the limit a3(L → ∞).
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Level a3 a4 a5 a6

2 0.002187797562 −3.7830611 10−6 4.1448524 10−9 −4.7728992 10−13

4 0.002245884478 −4.3957017 10−6 4.6338501 10−9 −5.4000742 10−13

6 0.002281097505 −4.5437634 10−6 4.7480437 10−9 −6.2618454 10−13

8 0.002304369408 −4.6509193 10−6 4.8933743 10−9 −6.7366480 10−13

10 0.002320816678 −4.7282645 10−6 4.9938778 10−9 −6.9213556 10−13

12 0.002333033369 −4.7867688 10−6 5.0729134 10−9 −7.0850857 10−13

14 0.002340032469 −4.8250629 10−6 5.1236425 10−9 −7.2267875 10−13

16 0.002342489534 −4.8443632 10−6 5.1338898 10−9 −7.3568697 10−13

ExactA4 0.00241475435(3) −5.205903(1) 10−6 5.692641(2) 10−9 −8.338132(4) 10−13

Table 1: First few coefficients an of the time-dependent solution
∑

n
anent at various levels of

truncation, when only the contribution from the quartic term in the effective action is considered

in the EOM. In the last row the exact four tachyon amplitude is used for the calculations.

The amplitude (2.25) can be used to improve the accuracy of the remaining coefficients

an, n ≥ 4. The exact evaluation of a4 would require the knowledge of A5(p1, . . . , p5), for

which an expression analog to (2.25) is not known. However, when solving the CSFT equa-

tion of motion, one can easily see that the dominant contribution to a4 comes from the lower

order amplitudes A2(p1, p2), A3(p1, p2, p3), A4(p1, p2, p3, p4). Therefore, for a precise evalu-

ation of a4 seems more relevant to know these lower order amplitudes exactly, rather than

A5(p1, . . . , p5) approximate in levels. The remaining columns in table 1 give the behavior

of the coefficients a4, a5, a6 for increasing levels of truncation, when only the contribution

from the quartic term in the effective action is considered in the equations of motion. The

last row gives the corresponding value obtained from the exact amplitude (2.25) (i.e. limit

L → ∞). As can be seen from table 1, for any fixed L, |an(L)| < |an(L → ∞)|. Notice

that the same property holds also in the calculation of the coefficient of the quartic tachyon

potential. Indeed, up to L = 28 [13], |c4,L| < |c4|. Moreover, for any fixed n, the sequence

(an(L+2)−an(L)) goes like Cnan(L)/L, Cn being a constant, confirming the 1/L behavior

of the leading correction [51, 13]. The results given in the last row of table 1 provide the

first few coefficients of the trial solution (5.1).

We can now include in the computation of a4, a5, a6 the L = 2 truncated expressions

for A5(p1, . . . , p5), A6(p1, . . . , p6), A7(p1, . . . , p7). The numerical results are listed in table

2. The L = 2 truncated A7(p1, . . . , p7), however, gives a contribution to a6 which is not reli-

able, since increasing the order of the effective action higher level field components become

more and more important. The inclusion of the a6 coefficient, in any case, does not change

the behavior of the solution around the first two turnaround points. This is the region

where we shall mainly focus, only here the solution with the first few coefficients is reliable.

In figure 4 we show how the solution changes at the second turnaround point by

introducing higher order terms of the effective action. The higher group of trajectories

is obtained by using the exact value for the four-tachyon effective action and adding to

it the level L = 2 five and six tachyon effective action, the lower group by using only

L = 2 terms (the solid line in this group represent the solution of ref. [14] up to the e5t

– 17 –
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Effective action a3 a4 a5

Aexact
4 0.00241475435(3) −5.205903(1) 10−6 5.692641(2) 10−9

Aexact
4 , AL=2

5 0.00241475435(3) −5.348643(1)10−6 3.231846(1)10−9

Aexact
4 , AL=2

5 , AL=2
6 0.00241475435(3) −5.348643(1)10−6 2.0650063(5)10−9

Table 2: First few coefficients an of the time-dependent solution
∑

n
anent. The first column

indicates which terms of the effective action are considered in the EOM.

3.4 3.6 3.8 4.2

-80

-60

-40

-20

Figure 4: Solution at the second turnaround point. The higher group of trajectories is obtained

by using the exact value for the four-tachyon effective action (solid line) and adding to it the level

L = 2 five (long dashed line) and six (dashed line) tachyon effective action, the lower group by

using only L = 2 terms. The solid line in the lower group represents the solution of ref. [14] up to

the e5t power.

power). As it is manifest from the figure the use of an exact A4 leads to a decreasing of the

amplitude of the oscillations by at least the 20%. This is however not enough to change

the qualitative behavior of the solutions which maintains huge oscillations and does not

provide a physically meaningful picture. The best approximation we get is given by the

solution obtained using the exact A4 and the level 2 A5, A6. It reads

φ(t) ∼= et − 64

243
√

3
e2t + 0.00241475 e3t − 5.34864310−6 e4t + 2.065006310−9 e5t (5.7)

and is plotted in figure 5 against the solution (5.4) of ref. [14] up to the coefficient of e5t.

The solution (5.7) can also be compared to the analytic solution found in [20] at the

(0, 0) level that reads, for t < 0,

φ(t) = −6λ
− 5

3
c

∞
∑

n=1

(

−1

6

)n

nλ
− 4

3
n2+3n

c ent , (5.8)

where λc = 3
9
2 /26. In [20], a different expression was considered for t > 0. If however we

consider eq. (5.8) also for positive values of t, it can be conveniently compared to (5.7)

and (5.4). For t < 0 all the solutions overlap up to the 6-th significative digit. For positive

– 18 –
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Figure 5: Second turnaround point for the solution (solid line) given in ref. [14] and the solution

(dashed line) obtained using the exact A4 and the level 2 A5, A6.

t, all the solutions present the expected oscillatory behavior with ever-growing amplitudes

and have constant energy. In CSFT where the action contains infinite derivatives the

kinetic energy can be negative and thus the tachyon can move to higher and higher heights

on the tachyon potential while conserving the total energy [18]. Whatever solution one

chooses, the position of the first extremum seems to be fixed at t1 ∼ 1.27 with amplitude

φ(t1) ∼ 1.74. In addition, such a position is compatible within the 1% also with [18], where

an analog approximate solution was considered using the cosh nt basis. This suggests the

idea that the first maximum could have a physical meaning. Actually, since the solution

describes the motion of the tachyon rolling off its unstable maximum at φ = 0, the naive

energy conservation would confine the motion between 0 ≤ φ(t) ≤ φM , where φM denotes

the maximum value attained by φ i.e. is the naive inversion point defined by the condition

Veff [0] = Veff [φM ] on the effective tachyon potential Veff . A natural interpretation for the

first maximum is therefore φ(t1) ∼ φM . Numerically, the value φM ∼ 1.7 is in fact in a

qualitative agreement with the available data on the effective tachyon potential [52].

The other extrema, instead, do not have any clear physical meaning. These oscillations

undergo wild ever-growing amplitudes, which, however, depend quite significantly on the

solution chosen. In passing from (5.4) to (5.7), both positions of the turnaround points and

their amplitudes change. For instance, as shown in figure 5, the amplitude of the second

turnaround point is lowered by a 20% factor, the third one by an order of magnitude.

In conclusion, it seems that up to the first turnaround point all the solutions (5.4),

(5.7), (5.8), practically coincide. After the first turnaround point, the wild oscillations

with increasing amplitudes found in refs. [18, 14] are confirmed. Although the qualitative

behavior is reproduced, the oscillations in (5.7) are sensibly reduced when compared to

those in ref. [14]. Up to the second turnaround point, where low powers of et dominate, (5.7)

provides a more accurate estimate for the trajectory of the rolling tachyon in CSFT.
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A. Neumann coefficients

Exact formulas for the Neumann coefficients V rs and Xrs appearing in (2.19) were com-

puted in [53]3. The indices r, s take values from 1-3 and indicate wich Fock space the

oscillators act in. The 3-string coefficients V rs
mn, Xrs

mn are given in terms of the 6-string

Neumann coefficients N r,±s
nm

N r,±r
nm =

{

1
3(n±m) (−1)n(AnBm ± BnAm), m + n even, m 6= n

0, m + n odd
(A.1)

N r,±(r+σ)
nm =

{

1
6(n±σm) (−1)n+1(AnBm ± σBnAm), m + n even, m 6= n

σ
√

3
6(n±σm)(AnBm ∓ σBnAm), m + n odd

]

. (A.2)

where in N r,±(r+σ), σ = ±1, and r + σ is taken modulo 3 to be between 1 and 3. In (A.2)

An, Bn are defined for n ≥ 0 through

(

1 + ix

1 − ix

)1/3

=
∑

n even

Anxn + i
∑

m odd

Amxm (A.3)

(

1 + ix

1 − ix

)2/3

=
∑

n even

Bnxn + i
∑

m odd

Bmxm .

The 3-string matter Neumann coefficients V rs
nm are then given by

V rs
nm = −

√
mn(N r,s

nm + N r,−s
nm ), m 6= n, and m,n 6= 0

V rr
nn = −1

3

[

2
n

∑

k=0

(−1)n−kA2
k − (−1)n − A2

n

]

, n 6= 0

V r,r+σ
nn =

1

2
[(−1)n − V rr

nn] , n 6= 0 (A.4)

V rs
0n = −

√
2n

(

N r,s
0n + N r,−s

0n

)

, n 6= 0

V rr
00 = ln(27/16)

The ghost Neumann coefficients Xrs
mn,m ≥ 0, n > 0 are given by

Xrr
mn = m

(

−N r,r
nm + N r,−r

nm

)

, n 6= m

Xr(r±1)
mn = m

(

±N r,r∓1
nm ∓ N r,−(r∓1)

nm

)

, n 6= m (A.5)

Xrr
nn =

1

3

[

−(−1)n − A2
n + 2

n
∑

k=0

(−1)n−kA2
k − 2(−1)nAnBn

]

Xr(r±1)
nn = −1

2
(−1)n − 1

2
Xrr

nn

The Neumann coefficients satisfy a cyclic symmetry under r → r+1, s → s+1, correspond-

ing to the geometric symmetry of rotating the vertex. Furthermore, they are symmetric

3In some references signs and factors in the Neumann coefficients may be slightly different. We follow

here the choices of [54].
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under the exchange r ↔ s, n ↔ m and satisfy the twist symmetry associated with reflection

of the strings

V rs
nm = (−1)n+mV sr

nm (A.6)

Xrs
nm = (−1)n+mXsr

nm .

B. Level truncation method

As a specific example of the level truncation method explained in section 2.3 let us derive

explicitly the four tachyon amplitude for L = 2 in the time-dependent case. At this level of

truncation and with the change of coordinates (2.26), the matrices ˜V 11 and X̃11 in (2.17)

become the 2 × 2 matrices

˜V 11 =

(

V 11
11 σ V 11

12 σ
3
2

V 11
21 σ

3
2 V 11

22 σ2

)

, X̃11 =

(

X11
11σ X11

12σ
3
2

X11
21σ

3
2 X11

22σ2

)

(B.1)

and analog forms for all the objects contained in (2.20) may be written. Expanding the

determinant and the exponential in (2.17) in powers of σ up to σ2 one gets

A4(p1, p2, p3, p4) =
λ2

cg
2

2
λ

2
3
(
P4

i=1 p2
i +p1·p2+p3·p4)

c δ

(

∑

i

pi

)

∫ 1

0

dσ

σ2
σ− 1

2
[(p1+p2)2+(p3+p4)2]

{

1 − b1(p1 − p2)(p3 − p4)σ +
1

2

[

b2 + b3

(

(p1 − p2)
2 + (p3 − p4)

2
)

+b4(p1 − p2)
2(p3 − p4)

2 + b5(p1 + p2)(p3 + p4)
]

σ2 + O(σ3)

}

(B.2)

where

b1 = (V 12
01 )2, b2 = 26(V 11

11 )2 − 2(X11
11 )2, b3 = (V 12

01 )2V 11
11 ,

b4 = (V 12
01 )4, b5 = 18(V 12

02 )2. (B.3)

To get the quartic term in the tachyon effective action on has to subtruct the contribution

from the tachyon in the propagator, that corresponds to the σ0 power -the constant term

1- in (B.2). Since, as already noticed, for a four point amplitude only even powers of σ

need to be considered, one is left with the coefficient of the σ2 term in the sum. Performing

the integral over σ, one finally gets the formula for the quartic term in the CSFT tachyon

effective action (5.2) in the time-dependent case

AL=2
4 (p1, p2, p3, p4) = λ2

cg
2

∫ n
∏

i=1

(2πdpi)δ

(

∑

i

pi

)

φ(pi)
λ

2
3
(
P4

i=1 p2
i +p1·p2+p3·p4)

c

1 − (p1 + p2)2

[

b2

4
+ b3p1(p2 − p1) + b4p2p4(p2 − p1)(p4 − p3) + b5p2p4

]

(B.4)
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